

Blocks Docs

	Welcome to Blocks
	Welcome

	Who is Blocks for?

	Requirements

	How to read this documentation

	Installation
	Manual Installation

	Via Composer Create-Project

	Installation

	Setting Up

	Running Your App
	Initial Configuration & Set Up

	CLI

	Local Development Server

	Blocks Overview

	Controllers
	A simple Controller

	Passing params from URI to Controller

	Views
	Creating a View

	Loading a View

	Error Handling

	Models
	A simple Model

	Migrations

	Resources

	Helpers
	Sessions Helper

	String Helper

	URL Helper

	The MIT License (MIT)

Welcome to Blocks

Welcome

Blocks is a very minimal PHP framework for building web applications. So why another PHP framework?
Why not use the other frameworks available? I found that most frameworks are too large and contain too many dependencies or might be too micro and will have to install other dependencies. So with me not liking to work with most PHP frameworks , I decided to develop a minimal framework which is not too large and not too small either.

Who is Blocks for?

Blocks is right for you if:

	you want a framework with a small footprint

	you want a framework with very few configurations

Requirements

	PHP [https://php.net] 7.* or newer

How to read this documentation

If you are new to Blocks, I recommend you read this documentation from start to finish.This documentation begins by explaining Blocks’s concepts and architecture before venturing into specific topics like controllers and models, routing, and error handling.

Installation

Manual Installation

The Blocks framework [https://github.com/asadadams/blocksmvc] repository holds the released versions of the framework.

Develop your app inside the app folder, and the public folder will be your public-facing document root. Do not change anything inside the system folders!

Via Composer Create-Project

Alternatively, you may also install Blocks by issuing the Composer create-project command in your terminal:

composer create-project blocks/framework projectName

Installation

Download the latest version [https://github.com/asadadams/blocksmvc/relases/latest] , and extract it to become your project root.

Setting Up

	Download and install Composer [https://getcomposer.org/]

	Download and install Node js [https://nodejs.org/en/]

	Run npm install (Installing command-line tool (CLI))

	Run composer install

	In gulpfile.js on line 61 change proxy from http://localhost/blocks to http://localhost/<your directory name>

	In .htaccess in the public directory change line 3 from RewriteBase /blocks/public to RewriteBase /<your directory name>/public

Running Your App

This would not be suitable for app development, but is suitable for contributing to the framework.

Initial Configuration & Set Up

	Open the app/Config/app.php with a text editor and set your URLROOT. The default value of URLROOT is set to to ‘localhost/blocks’.

	If you intend to use a database, open the app/Config/database.php file with a text editor and set your database settings.

CLI

Blocks comes Blocks comes with command-line tool(CLI) which helps you in many operations. For more information on the commands click here [https://github.com/asadadams/Blocks-cli#commands].

Local Development Server

Blocks comes with command-line tool which will help you set up a development server. This server also minifies all of your css,scss and js codes.

npx blocks start
OR
npx blocks s

Blocks Overview

A fresh install of blocks has eight directories /app, /bin, /database, /public, setup and possibly /docs, /node_modules and /vendor

/app directory:

/Config Stores the configuration files
/Controllers Controllers determine the program flow
/Core Contains Blocks main classes
/Helpers Helpers store collections of standalone functions
/Models Models work with the database to represent the business entities.
/Views Views make up the HTML that is displayed to the client.

/bin directory:

/scripts Contains scripts to be used by the frameword

/database directory

Contains all migrations created

/public directory

Contains all files that should be accessible in the browser. This is where your CSS,JS and images should be placed

/setup directory
Contains database and migrations configuration files

/docs directory
Contains the documentation

/vendor directory
Contains all PHP dependencies

/node_modules directory
Contains all node dependencies used by the CLI

Controllers

Controllers handles routing in Blocks. Controllers are class files that are associated to the URL. Consider the URL below:

http://localhost/blocks/home/sayName/adams/asad

From this URL Blocks tries to find the controller home and call the method sayName. adams and asad here are extra parameters passed to the controller.

A simple Controller

So let’s create a very simple controller and let’s see how it works. Create a file About.php and enter in the following code, then save it to app/Controllers directory.

Note

Is a good coding convention start all classes with an upper case. Therefore About.php

	1
2
3
4
5
6
7
8

	 <?php

 class About extends Controller {

 public function index() {
 echo "This is the about page";
 }
 }

See also

All controllers must extend the Controller class

Now if you should visit:

http://localhost/blocks/home

OR:

http://localhost/blocks/home/index

You would see:

This is the about page

Note

Index methods are automatically called

Passing params from URI to Controller

If your url contains more than 2 segments the rest will be passed to the controller as parameters:

http://localhost/blocks/home/index/adams

adams is therefore passed as a parameter and accepted in the controller as shown below

	1
2
3
4
5
6
7
8

	 <?php

 class About extends Controller {

 public function index($name) {
 echo "My name is".$name;
 }
 }

Views

View is just a web page you would want to display. This can be a header or a footer etc. Views can be loaded in a controller.

Using the example controller you created in the controller page, let’s add a view to it.

Creating a View

Let’s create a simple view and load it with the controller we have already created. Using a text editor, create a file called dashboard.php and save it to app/Views directory

	1
2
3
4
5
6
7
8
9

	 <html>
 <head>
 <title> My Dashbord</title>
 </head>
 <body>
 <h1Dashboard</h1>
 <p>Welcome to your dashboard</p>
 </body>
 </html>

Loading a View

To load the view in our index method in the controller

$this->view('dashboard');

Note

You don’t need the .php extension

Error Handling

Blocks let you show 3 error pages by default, these are 404,401 and 500 pages. Blocks automatically shows a 404 page if a controller is not found. You can load a an error page in a controller by loading a view of 404,401 or 500

$this->view('404');

The default templates of these error pages are located at app/Core/Exceptions/Views

Models

Blocks uses Eloquent ORM from laravel to make modeling of data very easy.

A simple Model

So let’s create a very simple User Model. Create a file User.php and enter in the following code, then save it to app/Models directory.

Note

Is a good coding convention start all classes with an upper case. Therefore About.php

Note

We are assuming you have a user table in your database

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 <?php
 namespace Models;

 use Illuminate\Database\Eloquent\Model as Eloquent;

 class User extends Eloquent {

 protected $table = 'user';

 }

See also

All Models must extend the IlluminateDatabaseEloquentModel class and should be namespaced Models

Read Eloquent Docs [https://laravel.com/docs/4.2/eloquent]

Migrations

In software engineering, schema migration (also database migration, database change management) refers to the management of incremental, reversible changes and version control to relational database schemas. A schema migration is performed on a database whenever it is necessary to update or revert that database’s schema to some newer or older version. Migrations are performed programmatically by using a schema migration tool. Source: Wikipedia [https://en.wikipedia.org/wiki/Schema_migration].

Blocks can make Database migrations only with it’s command-line tool (CLI) Blocks-cli [https://github.com/asadadams/Blocks-cli].

Resources

Please read these resources to be able to use migrations and models

	Eloquent ORM [https://laravel.com/docs/4.2/eloquent]

	Schema Building [https://laravel.com/docs/4.2/schema]

	Writing Migrations [https://book.cakephp.org/phinx/0/en/migrations.html]

Helpers

Helpers are a collection of functions.

	Helpers

	Description

	Session

	Helper functions related to Sessions

	Str

	Helper functions related to Strings

	Url

	Helper functions related to URL

Sessions Helper

The following are the static methods available:

Session::isSet([$key=''])

Check if session is set

Parameters:

	$key (string) – Session’s key

Returns:
a Boolean

Return type:
Boolean

Session::set([$key='', $value=''])

Method for setting a session

Parameters:

	$key (string) – Key for session

	$value (string) – Value to store in session

Returns:
void

Return type:
void

Session::get([$key=''])

Getting value in a sesion

Parameters:

	$key (string) – session to get

Returns:
Session’s value | null

Return type:
String | null

Session::remove([$key=''])

Removing session

Parameters:

	$key (string) – session to get

Returns:
void

Return type:
void

String Helper

The following are the static methods available:

Str::uuid()

Generates a uuid

Returns:
a uuid

Return type:
String

Str::encrypt_password([$string=''])

Encrypts a string password

Parameters:

	$string (string) – String to encrypt

Returns:
an encrypted password

Return type:
String

Str::validate_password([$password1='',$password2=''])

Validating if password is correct

Parameters:

	$password1 (string) – Validating if this matches to password2

	$password2 (string) – Validating if this matches to password1

Returns:
if password matches

Return type:
Boolean

URL Helper

The following are the static methods available:

Url::redirect([$page=''])

redirecting to a page

Parameters:

	$page (string) – Page to redirect you to

Returns:
void

Return type:
void

Url::secure_public({$path=''})

Generates a fully secured qualified URL to the public directory or a path

Parameters:

	$path (string) – The path

Returns:
secure URL to public directory or a path

Return type:
String

Url::public([$path=''])

Generates a fully qualified URL to the public directory or a path

Parameters:

	$path (string) – The path

Returns:
URL to public directory or a path

Return type:
String

The MIT License (MIT)

MIT License

Copyright (c) 2019 Adams

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Blocks Docs

 		
 Welcome to Blocks

 		
 Welcome

 		
 Who is Blocks for?

 		
 Requirements

 		
 How to read this documentation

 		
 Installation

 		
 Manual Installation

 		
 Via Composer Create-Project

 		
 Installation

 		
 Setting Up

 		
 Running Your App

 		
 Initial Configuration & Set Up

 		
 CLI

 		
 Local Development Server

 		
 Blocks Overview

 		
 Controllers

 		
 A simple Controller

 		
 Passing params from URI to Controller

 		
 Views

 		
 Creating a View

 		
 Loading a View

 		
 Error Handling

 		
 Models

 		
 A simple Model

 		
 Migrations

 		
 Resources

 		
 Helpers

 		
 Sessions Helper

 		
 String Helper

 		
 URL Helper

 		
 The MIT License (MIT)

_static/up-pressed.png

_static/up.png

_static/plus.png

